

Tetrahedron Letters

Tetrahedron Letters 46 (2005) 7669-7673

Synthesis of 5-aza-analogues of angucyclines: manipulation of the 2-deoxy-C-glycoside subunit

Nguyen Quang Vu,^a Gilles Dujardin,^{a,*} Sylvain C. Collet,^{b,*} Eun-Ang Raiber,^b André Y. Guingant^{b,*} and Michel Evain^c

^aLaboratoire de Synthèse Organique, UMR CNRS 6011, Université du Maine, F-72085, Le Mans Cedex 9, France ^bLaboratoire de Synthèse Organique, UMR CNRS 6513, Faculté des Sciences et des Techniques, 2 rue de la Houssinière, BP 92208-44322 Nantes Cedex 03, France

^cInstitut des Matériaux Jean Rouxel, 2, rue de la Houssinière, BP 92208-44322 Nantes Cedex 03, France

Received 21 July 2005; revised 6 September 2005; accepted 9 September 2005 Available online 26 September 2005

Abstract—Based on a heterocyclic Diels–Alder strategy, a concise synthesis of 5-aza-analogues of angucyclines bearing a 2-deoxy-*C*-glycoside subunit is reported. Starting from a common intermediate, a peracetylated D-2-deoxyglucose could be linked to carbons C9 or C10 of the tetracyclic framework. Further manipulations of the sugar residue allowed the installation of bromo and azido substituents at carbon C6'.

© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

Angucyclines belong to an ever-growing class of natural products characterized by a unique benz[a]anthraquinone core structure.¹ Angucyclines and their aglycones (angucyclinones) often display a broad range of interesting biological and pharmaceutical activities. Therefore, this class of compounds represents a source of inspiration for the design and synthesis of structural analogues, which could be of value for SAR studies. In this regard, we recently disclosed a simple and efficient strategy for the synthesis of 5-aza-analogues of angucyclines having the B-ring fully aromatized.² Our synthetic route,

which relies on a hetero Diels-Alder reaction between a 2-bromo-[1,4]naphthoquinone and the 'push-pull' aza diene 3, allows the extremely direct formation of 5-aza-analogues of angucyclines in good to excellent chemical yields. This strategy is particularly promising since structural diversity could be easily introduced by varying the nature and position of substituents on the diene and (or) the dienophile. As a first demonstrative example, we reported² the synthesis of the 5-aza-analogue 4, bearing a 2-deoxy-C-glycoside unit at carbon C10 (angucycline numbering), by reaction of diene 3 with dienophile 2 prepared in few steps from 1 (Scheme 1).

Scheme 1.

Keywords: Angucycline; Angucycline; Angucycline-5-aza-analogue; 2-Aza-1,3-diene; 2-Bromo-naphthoquinone; Hetero-Diels-Alder reaction; C-Glycoside.

^{*} Corresponding authors. Tel.: +33 (0)2 43 83 33 44; fax: +33 (0)2 43 83 39 02; e-mail: gilles.dujardin@univ-lemans.fr

In continuation of our efforts to find 5-aza-analogues of angucyclines with significant biological activities, we next focused our attention on the possibility of introducing different substituents at carbon C6′ of the 2-deoxy-C-glycoside unit. These modifications could affect the bioactivity of the corresponding compounds as a result, inter alia, of alteration of hydrophilicity or lipophilicity. Additionally, we were also interested to find conditions that would allow the linkage of the 2-deoxy-C-glycoside unit at carbon C9, instead of C10 as previously realized.^{3,4}

2. Substitution at C6': synthesis of the angucycline 5-aza-analogues 9 and 13

We first envisaged to synthesize the angucycline 5-azaanalogue 9 having a bromine atom at carbon C6' of the sugar moiety. The introduction of a versatile bromine atom at C6' of 9 is particularly attractive since its displacement with various nucleophilic species (thiol, amine, etc.) should allow synthetic access to several other angucycline 5-aza-analogues. According to our hetero Diels-Alder protocol, compound 9 should be formed by reacting the 2-bromo-[1,4]naphthoquinone 7 with aza-diene 3, followed by selective deacetylation at C11 (Scheme 2).

A possible precursor of 7 being the 1,5-naphthalene derivative 5, we first attempted to reach this compound by treating the unprotected Toshima coupling product 1^5 with PPh₃–Br₂, following a protocol developed for selective C6 halogenation of α -D-methyl glycosides. Under these conditions, however, compound 5 was accompanied, inter alia, with di-bromo compounds

from which it could only be separated after transformation to the peracetylated derivative **6**. Applying the Grunwell conditions⁷ to **6** next afforded the key 2-bromo-[1,4]naphthoquinone **7** in good yield. Its subsequent condensation with diene **3** led, after in situ transformation of the primary adduct, to the tetracyclic trione **8**, which was selectively deacetylated to provide the angucycline 5-aza-analogue **9**⁸ (84% yield for the two steps).

At this stage, we planned to introduce an azido group at C6′ by effecting a nucleophilic substitution of the bromine atom in 9. Toward this end 9 was treated with sodium azide in DMSO at room temperature. These conditions, however, failed to give any traces of the expected angucycline 5-aza-analogue 13. Fortunately, application of these same conditions to 6 effected the desired transformation to give 10 in moderate yield. As for the synthesis of 9, the transformation of 10 to 13° proceeded without incident over the course of three steps as outlined in Scheme 3.

3. Introduction of a sugar unit at C9: synthesis of the angucycline 5-aza-analogue 14

Our next effort aimed at synthesizing the angucycline 5-aza-analogue **14** bearing a peracetylated D-2-deoxyglucose residue linked at carbon C9. A retrosynthetic analysis based on a hetero Diels—Alder cycloaddition strategy allows to discern 2-bromo-[1,4]naphthoquinone **15** and diene **3** as key intermediates (Scheme 4).

Prior experience gained in the synthesis of dienophile 2 from 1,5-naphthalene diol 16 suggested that its isomer

Scheme 2. Synthesis of the angucycline 5-aza-analogue 9. Reagents and conditions: (i) Br₂ (1.5 equiv), PPh₃ (1.5 equiv), rt, 15 h; (ii) Ac₂O, Py, rt, 15 h; (28%, two steps); (iii) NBS (6 equiv), AcOH–H₂O (1:2), 70 °C, 3 h, 77%; (iv) 3 (1.2 equiv), MeCN, 60 °C, 60 h; (v) NH₄OAc (8 equiv), MeOH–H₂O (4:1), rt, 7 h, 84% (two steps).

Scheme 3. Synthesis of the angucycline 5-aza-analogue 13. Reagents and conditions: (i) NaN₃ (1.5 equiv), DMSO, rt, 12 h, 55%; (ii) NBS (6 equiv), AcOH–H₂O (1:2), 70 °C, 3 h, 38%; (iii) 3 (1.2 equiv), MeCN, 60 °C, 60 h; (iv) NH₄OAc (8 equiv), MeOH–H₂O (4:1), rt, 7 h, 84% (two steps).

$$\begin{array}{c} \text{OAc} \\ \text{OAc} \\ \text{OAc} \\ \text{OH} \\ \text{OH$$

Scheme 4.

15 could be generated from 1,8-naphthalene diol 17 by application of an identical sequence of reactions. However, coupling of 17 with D-2-deoxyglucose under the conditions described by Toshima⁵ proved unfruitful. We thus anticipated that the precursor of 2 (i.e., 1) could also serve as an effective precursor to the 2-bromo-[1,4]naphthoquinone 15 as well, provided that appropriate modifications of experimental procedure, especially with respect to regioselectivity of the crucial bromination step, could be accomplished. The realization of this objective is outlined in Scheme 5.

The synthesis of 15 began with the chemoselective deacetylation of 18, which, when treated with ammonium acetate, ¹⁰ afforded a 5:1 ratio of acetate 19 and diol 20. These compounds were subsequently separated by column chromatography, thereby affording 19 in 63% isolated yield. Oxidation of 19 to 1,4-naphthoquinone 21 was best accomplished by treatment with an excess of diacetoxyiodobenzene (DAIB) in an acidic medium. Because 21 appeared to be somewhat unstable on silica, it was employed without further purification for the next step, which consisted in the chemoselective hydrolysis of the remaining acetoxy substituent on the naphthoquinone ring. After some unsuccessful experimentation, it was discovered that this transformation

could be accomplished by exposure of 21 to an excess of BF₃-Et₂O in methylene chloride at room temperature for 5 days. 11 Under these experimental conditions, the 1,4-naphthoquinone 22 could be isolated in 62% overall yield. We were now in a position to effect the crucial bromination reaction. Treatment of 22 with bromine in chloroform followed by mild warming in EtOH led to a 4/1 mixture of isomeric bromo-[1,4]naphthoquinones 15 and 24, that could not be easily separated by chromatography. However, when the crude primary di-bromo adduct 23 was heated in ethanol in the presence of BF₃-Et₂O, ¹² the desired 2-bromo-[1,4]naphthoquinone 15 was formed, along with only a small amount of 24. After crystallization from AcOEt-petroleum ether, 15 could be isolated in 65% yield and its structure confirmed by single-crystal X-ray analysis¹³ (Fig. 1). Parenthetically, and unsurprisingly, bromination of the 1,4-naphthoquinone 21 led principally to the corresponding 2-bromo-5-acetoxy-[1,4]naphthoquinone 2.

Finally, with the 2-bromo-[1,4]naphthoquinone **15** in hand, its cycloaddition with aza-diene **3** could be attempted. Admixture of both partners in acetonitrile at room temperature smoothly led to the desired angucycline 5-aza-analogue **14**¹⁶ in a 61% yield.

$$1 \xrightarrow{\text{ref 2}} AcO \xrightarrow{\text{OAc}} i \xrightarrow{\text{AcO}} AcO \xrightarrow{\text{H}} OR \xrightarrow{\text{OAc}} AcO \xrightarrow$$

Scheme 5. Synthesis of the 2-bromo-8-hydroxy-[1,4]naphthoquinone 15. Reagents and conditions: (i) NH_4OAc (4 equiv), $MeOH-H_2O$, 4:1, 70 °C, 6 h, 63%; (ii) DAIB (3 equiv), $TFA-AcOH-H_2O$ (6:3:1), 40 °C, 1 h; MeOH, rt, 2 h; (iii) BF_3-Et_2O (10 equiv), CH_2Cl_2 , rt, 5 days (62%, two steps); (iv) Br_2 (1.1 equiv), $CHCl_3$, 0 °C, 2 h; (v) BF_3-Et_2O , EtOH, 60 °C, 15 min (65%).

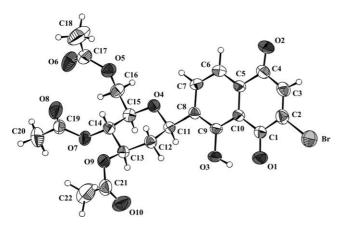


Figure 1. ORTEP drawing of compound 15.

4. Conclusion

In conclusion, a convergent synthesis of the angucycline 5-aza-analogues **9**, **13**, and **14** has been achieved. A key feature of this synthetic work includes a [4+2] cyclo-addition between a 2-aza-1,3-diene **3** and a 2-bromo-[1,4]naphthoquinone bearing a C6'-substituted (OAc, Br, N₃) *C*-glycoside moiety. Also of note is the preparation of dienophiles **2** and **15** from the common precursor **1**. We believe that the present work would facilitate the synthesis of a small library of angucycline 5-aza-analogues for biological evaluation.¹⁷

Acknowledgments

The support of the 'Région des Pays de la Loire' (CER 2000–2006) is gratefully acknowledged. We are also grateful to Professors C. Monneret (Curie Institute, Paris) and J. P. Gesson (University of Poitiers) for helpful discussions.

References and notes

- (a) Rohr, J.; Thiericke, R. Nat. Prod. Rep. 1992, 9, 103–137; (b) Krohn, K.; Rohr, J. Top. Curr. Chem. 1997, 188, 127–195; (c) Carreno, M. C.; Urbano, A. Synlett 2005, 1–25.
- Collet, S.; Remi, J.-F.; Cariou, C.; Laïb, S.; Guingant, A.; Vu, N.-Q.; Dujardin, G. *Tetrahedron Lett.* 2004, 45, 4911–4915.
- 3. Examples of a *C*-glycoside linkage at C-10 can be found in natural products related to angucyclines (hedamycin, pluramycin, etc.). See, for example: Hansen, M. R.; Hurley, L. H. *Acc. Chem. Res.* **1996**, *29*, 249–258. In angucyclines, however, the *C*-glycoside linkage occurred at C-9.⁴
- 4. The benzanthrin class, in which the *C*-glycosidic moiety is linked at C2, represents a notable exception (a) Theriault, R. J.; Rasmussen, R. R.; Kohl, W. L.; Prokop, J. F.; Hutch, T. B.; Barlow, G. J. *J. Antibiot.* **1986**, *39*, 1509–1514; (b) Rasmussen, R. R.; Nuss, M. E.; Scherr, M. H.; Mueller, S. L.; McAlpine, J. B. *J. Antibiot.* **1986**, *39*, 1515–1526
- Toshima, K.; Matsuo, G.; Ishizuka, T.; Ushiki, Y.; Nakata, M.; Matsumura, S. J. Org. Chem. 1998, 63, 2307–2313.

- Leon-Ruaud, P.; Plusquellec, D. Tetrahedron 1991, 47, 5185–5192.
- (a) Heinzman, S. W.; Grunwell, J. R. Tetrahedron Lett. 1980, 21, 4305–4308; (b) Jung, M. E.; Hagenah, J. A. J. Org. Chem. 1983, 48, 5359–5361.
- 8. Spectral data for compound 9: ¹H NMR (CDCl₃, 400 MHz): δ 1.62 (ddd, J = 12.9 Hz, J = 11.4 Hz, J = 11.4 Hz, 1H), 2.03 (s, 3H), 2.11 (s, 3H), 2.30(dt, J = 6.8 Hz, J = 6.1 Hz, 2H), 2.67 (ddd, J = 12.9 Hz, J = 5.2 Hz, J = 2.0 Hz, 1H, 2.98 (t, J = 6.8 Hz, 2H), 3.22(t, J = 6.1 Hz, 2H), 3.51 (dd, J = 11.4 Hz, J = 5.6 Hz, 1H), 3.60 (dd, J = 11.4 Hz, J = 2.8 Hz, 1H), 3.84 (ddd, J = 8.3 Hz, J = 5.6 Hz, J = 2.8 Hz, 1H, 5.06 (dd, J =11.4 Hz, J = 2.0 Hz, 1H), 5.09 (dd, 1H, J = 9.4 Hz, J =9.4 Hz, 1H), 5.28 (ddd, J = 11.4 Hz, J = 9.4 Hz, J = 5.2 Hz, 1H), 7.87 (d, J = 8.1 Hz, 1H), 8.01 (d, J = 8.1 Hz, 1H), 9.51 (s, 1H), 12.05 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 21.0, 21.4, 31.8, 33.2, 36.4, 39.2, 60.4, 71.3, 71.6, 71.7, 76.8, 116.2, 119.7, 126.4, 128.9, 131.1, 134.1, 136.8, 138.9, 151.6, 158.1, 169.1, 169.9, 170.3, 181.0, 186.9, 198.1. MS (CIN): 585 ($[C_{27}H_{24}NO_9^{79}Br]^-$, 94), 586 ($[C_{27}H_{24}NO_9^{81}Br-H]^-$, 29); 587 ($C_{27}H_{24}NO_9^{81}Br]^-$, 100). HRMS (ESP) [M+Na]⁺: calcd for $C_{27}H_{24}NO_9BrNa$: 608.0532, found 608.0545. HRMS (ESP) $[M+K]^+$: calcd for C₂₇H₂₄NO₉BrK: 624.0272, found 624.0276. Anal. Calcd for $C_{27}H_{24}NO_9Br$: C, 55.30; H, 4.13; N, 2.39; Br,
- 13.63. Found: C, 55.31; H, 4.26; N, 2.32; Br, 13.34. 9. Spectral data for compound **13**: ¹H NMR (CDCl₃, 400 MHz): δ 1.62 (ddd, J = 12.7 Hz, J = 11.6 Hz, J =11.6 Hz, 1H), 2.03 (s, 3H), 2.09 (s, 3H), 2.30 (dt, $J = 6.6 \text{ Hz}, J = 6.6 \text{ Hz}, 2\text{H}), 2.68 \text{ (ddd}, } J = 12.7 \text{ Hz}, J = 12.7 \text{ Hz}$ 5.2 Hz, J = 2.0 Hz, 1H), 2.97 (t, J = 6.6 Hz, 2H), 3.22 (t, J = 6.6 Hz, 2H), 3.37 (dd, J = 13.4 Hz, J = 5.6 Hz, 1H), 3.46 (dd, J = 13.4 Hz, J = 2.5 Hz, 1H), 3.84 (ddd, J = 9.6 Hz, J = 5.6 Hz, J = 2.5 Hz, 1H, 5.06 (dd, J = 3.6 Hz, 1Hz)11.6 Hz, J = 2.0 Hz, 1H), 5.09 (dd, J = 9.6 Hz, J = 9.6 Hz, 1H), 5.28 (ddd, J = 11.6 Hz, J = 9.6 Hz, J = 5.2 Hz, 1H), 7.86 (d, J = 8.1 Hz, 1H), 7.96 (d, J = 8.1 Hz, 1H), 9.50 (s, 1H), 12,06 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 20.9, 21.4, 29.7, 33.2, 36.4, 39.2, 51.4, 70.2, 71.67, 71.69, 75.5, 116.2, 119.7, 126.4, 128.9, 131.1, 133.7, 136.6, 138.9, 151.6, 158.1, 169.1, 170.0, 170.3, 181.0, 187.0, 198.1. FT-IR (liquid film, cm⁻¹): 1746, 1778, 2108. MS (EI) m/z = 548 $([M]^+, 100); 520 ([M-N_2]^+, 3). HRMS (ESP) [M+Na]^+:$ calcd for C₂₇H₂₄N₄O₉Na: 571.1441, found 571.1436. HRMS (ESP) $[M+K]^+$: calcd for $C_{27}H_{24}N_4O_9K$: 587.1180, found 587.1179.
- Ramesh, C.; Mahender, G.; Ravindranath, N.; Das, B. Tetrahedron 2003, 59, 1049–1054.
- Andrews, F. L.; Larsen, D. S.; Larsen, L. Aust. J. Chem. 2000, 53, 15–24.
- 12. Brimble, M. A.; Brenstrum, T. J. J. Chem. Soc., Perkin Trans. 1 2001, 1612–1623.
- 13. X-ray crystallographic analysis—A plate-like (approximately $0.25 \times 0.25 \times 0.08$ mm³ in dimension), orange colored crystal was attached at the tip of a glass Lindeman capillary by means of silicon glue. Data collection was performed on a Brüker-Nonius KappaCCD diffractometer with graphite monochromatized MoK-L_{2,3} radiation. After the usual absorption correction (Gaussian integration), the structure was solved by direct methods (Sir2002¹⁴) and refined (Jana2000¹⁵) with anisotropic atomic displacement parameters for all non-H atoms. H atoms were defined with fully restrained angle (all H atoms but that of the OH group) and distance (all H atoms) geometry and riding isotropic displacement parameters (×1.2). Absolute configuration was unambiguously determined by refining the Flack enantiopole parameter (1.0018(19)) using Friedel pairs. The structure data are as

- follows: $C_{22}H_{21}BrO_{10}$, $M_r = 525.3$, monoclinic, $P2_1$, a = 5.6871(3) Å, b = 13.0649(6) Å, c = 15.6320(11) Å, $\beta = 99.054(5)^\circ$, V = 1147.01(11) Å³, Z = 2, $D_{calcd} = 1.520$ g cm⁻³, F(000) = 536, $\mu(MoK-L_{2,3}) = 1.845$ mm⁻¹, T = 293 K, R(obs) = 0.0661, S(obs) = 1.87 (6315 hkl, 4769 gt, 300 parameters, cutoff for observed: $I/\sigma(I) = 2$). Crystallographic details have been deposited at the Cambridge Crystallographic Data Center (deposition number: CCDC 278803).
- Burla, M. C.; Camalli, M.; Carrozzini, B.; Cascarano, G. L.; Giacovazzo, C.; Polidori, G.; Spagna, R. J. Appl. Cryst. 2003, 36, 1103.
- 15. Petricek, V.; Dusek, M. Jana2000. Structure Determination Software Programs. Institute of Physics, Praha, Czech Republic; 2000.
- 16. Spectral data for compound 14: 1 H NMR (CDCl₃, 300 MHz): δ 1.62 (ddd, J = 12.6 Hz, J = 11.7 Hz, J = 11.7 Hz, 1H), 2.03 (s, 3H), 2.09 (s, 3H), 2.11 (s, 3H),
- 2.29 (qt, J=6.6 Hz, 2H), 2.67 (ddd, J=12.6 Hz, J=5.1 Hz, J=1.8 Hz, 1H), 2.95 (t, J=6.6 Hz, 2H), 3.23 (t, J=6.6 Hz, 2H), 3.84 (ddd, J=9.6 Hz, J=4.8 Hz, J=2.1 Hz, 1H), 4.20 (dd, J=12.3 Hz, J=1.8 Hz, 1H), 4.37 (dd, J=12.3 Hz, J=5.1 Hz, 1H), 5.02 (d, J=9.9 Hz, 1H), 5.09 (dd, 1H, J=9.6 Hz, J=9.6 Hz, 1H), 5.26 (m, 1H), 7.74 (d, J=7.8 Hz, 1H), 7.93 (d, J=7.8 Hz, 1H), 9.51 (s, 1H), 12.54 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 20.85, 20.9, 21.0, 21.6, 33.5, 36.6, 39.2, 62.9, 69.6, 71.6, 72.1, 76.5, 114.8, 120.2, 126.6, 129.0, 133.7, 134.2, 136.5, 141.2, 151.3, 158.4, 169.8, 170.0, 170.4, 170.9, 181.8, 187.5, 197.5. FT-IR (KBr, cm⁻¹): 1571, 1636, 1683, 1710, 1748. MS (EI) m/z=566 ([M+H]⁺, 1), 505 ([M-OAc+H]⁺, 2); 385 (100). HRMS (ESP) [M+Na]⁺: calcd for C₂₉H₂₇NO₁₁Na: 588.1482, found 588.1478. HRMS (ESP) [M+K]⁺: calcd for C₂₉H₂₇NO₁₁K: 604.1221, found 624.1223.
- 17. Results of the cytotoxic tests will be reported elsewhere.